\(\int \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx\) [326]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 82 \[ \int \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=-\frac {\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \sin (e+f x)}{\sqrt {a+b \sin ^2(e+f x)}}\right )}{f}+\frac {\sqrt {a+b} \text {arctanh}\left (\frac {\sqrt {a+b} \sin (e+f x)}{\sqrt {a+b \sin ^2(e+f x)}}\right )}{f} \]

[Out]

-arctanh(sin(f*x+e)*b^(1/2)/(a+b*sin(f*x+e)^2)^(1/2))*b^(1/2)/f+arctanh(sin(f*x+e)*(a+b)^(1/2)/(a+b*sin(f*x+e)
^2)^(1/2))*(a+b)^(1/2)/f

Rubi [A] (verified)

Time = 0.15 (sec) , antiderivative size = 82, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3269, 399, 223, 212, 385} \[ \int \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=\frac {\sqrt {a+b} \text {arctanh}\left (\frac {\sqrt {a+b} \sin (e+f x)}{\sqrt {a+b \sin ^2(e+f x)}}\right )}{f}-\frac {\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \sin (e+f x)}{\sqrt {a+b \sin ^2(e+f x)}}\right )}{f} \]

[In]

Int[Sec[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

-((Sqrt[b]*ArcTanh[(Sqrt[b]*Sin[e + f*x])/Sqrt[a + b*Sin[e + f*x]^2]])/f) + (Sqrt[a + b]*ArcTanh[(Sqrt[a + b]*
Sin[e + f*x])/Sqrt[a + b*Sin[e + f*x]^2]])/f

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 399

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Dist[b/d, Int[(a + b*x^n)^(p - 1), x]
, x] - Dist[(b*c - a*d)/d, Int[(a + b*x^n)^(p - 1)/(c + d*x^n), x], x] /; FreeQ[{a, b, c, d, p}, x] && NeQ[b*c
 - a*d, 0] && EqQ[n*(p - 1) + 1, 0] && IntegerQ[n]

Rule 3269

Int[cos[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Sin[e + f*x], x]}, Dist[ff/f, Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b*ff^2*x^2)^p, x], x, Sin[e +
f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {\sqrt {a+b x^2}}{1-x^2} \, dx,x,\sin (e+f x)\right )}{f} \\ & = -\frac {b \text {Subst}\left (\int \frac {1}{\sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{f}+\frac {(a+b) \text {Subst}\left (\int \frac {1}{\left (1-x^2\right ) \sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{f} \\ & = -\frac {b \text {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\sin (e+f x)}{\sqrt {a+b \sin ^2(e+f x)}}\right )}{f}+\frac {(a+b) \text {Subst}\left (\int \frac {1}{1-(a+b) x^2} \, dx,x,\frac {\sin (e+f x)}{\sqrt {a+b \sin ^2(e+f x)}}\right )}{f} \\ & = -\frac {\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \sin (e+f x)}{\sqrt {a+b \sin ^2(e+f x)}}\right )}{f}+\frac {\sqrt {a+b} \text {arctanh}\left (\frac {\sqrt {a+b} \sin (e+f x)}{\sqrt {a+b \sin ^2(e+f x)}}\right )}{f} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.29 (sec) , antiderivative size = 129, normalized size of antiderivative = 1.57 \[ \int \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=\frac {\sqrt {a+b} \text {arctanh}\left (\frac {\sqrt {2 a+2 b} \sin (e+f x)}{\sqrt {2 a+b-b \cos (2 (e+f x))}}\right )+\frac {\sqrt {a} \sqrt {-b} \arcsin \left (\frac {\sqrt {-b} \sin (e+f x)}{\sqrt {a}}\right ) \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}}}{\sqrt {2 a+b-b \cos (2 (e+f x))}}}{f} \]

[In]

Integrate[Sec[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

(Sqrt[a + b]*ArcTanh[(Sqrt[2*a + 2*b]*Sin[e + f*x])/Sqrt[2*a + b - b*Cos[2*(e + f*x)]]] + (Sqrt[a]*Sqrt[-b]*Ar
cSin[(Sqrt[-b]*Sin[e + f*x])/Sqrt[a]]*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a])/Sqrt[2*a + b - b*Cos[2*(e + f*x)
]])/f

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(149\) vs. \(2(70)=140\).

Time = 1.12 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.83

method result size
default \(\frac {-\sqrt {b}\, \ln \left (\frac {\sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}\, \sqrt {b}+b \sin \left (f x +e \right )}{\sqrt {b}}\right )-\frac {\sqrt {a +b}\, \ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}-2 b \sin \left (f x +e \right )+2 a}{1+\sin \left (f x +e \right )}\right )}{2}+\frac {\sqrt {a +b}\, \ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}+2 b \sin \left (f x +e \right )+2 a}{\sin \left (f x +e \right )-1}\right )}{2}}{f}\) \(150\)

[In]

int(sec(f*x+e)*(a+b*sin(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

(-b^(1/2)*ln(((a+b-b*cos(f*x+e)^2)^(1/2)*b^(1/2)+b*sin(f*x+e))/b^(1/2))-1/2*(a+b)^(1/2)*ln(2/(1+sin(f*x+e))*((
a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)-b*sin(f*x+e)+a))+1/2*(a+b)^(1/2)*ln(2/(sin(f*x+e)-1)*((a+b)^(1/2)*(a+b-b
*cos(f*x+e)^2)^(1/2)+b*sin(f*x+e)+a)))/f

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 245 vs. \(2 (70) = 140\).

Time = 0.52 (sec) , antiderivative size = 1246, normalized size of antiderivative = 15.20 \[ \int \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=\text {Too large to display} \]

[In]

integrate(sec(f*x+e)*(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/8*(sqrt(b)*log(128*b^4*cos(f*x + e)^8 - 256*(a*b^3 + 2*b^4)*cos(f*x + e)^6 + 32*(5*a^2*b^2 + 24*a*b^3 + 24*
b^4)*cos(f*x + e)^4 + a^4 + 32*a^3*b + 160*a^2*b^2 + 256*a*b^3 + 128*b^4 - 32*(a^3*b + 10*a^2*b^2 + 24*a*b^3 +
 16*b^4)*cos(f*x + e)^2 + 8*(16*b^3*cos(f*x + e)^6 - 24*(a*b^2 + 2*b^3)*cos(f*x + e)^4 - a^3 - 10*a^2*b - 24*a
*b^2 - 16*b^3 + 2*(5*a^2*b + 24*a*b^2 + 24*b^3)*cos(f*x + e)^2)*sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(b)*sin(f*
x + e)) + 2*sqrt(a + b)*log(((a^2 + 8*a*b + 8*b^2)*cos(f*x + e)^4 - 8*(a^2 + 3*a*b + 2*b^2)*cos(f*x + e)^2 - 4
*((a + 2*b)*cos(f*x + e)^2 - 2*a - 2*b)*sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(a + b)*sin(f*x + e) + 8*a^2 + 16*
a*b + 8*b^2)/cos(f*x + e)^4))/f, -1/8*(4*sqrt(-a - b)*arctan(1/2*((a + 2*b)*cos(f*x + e)^2 - 2*a - 2*b)*sqrt(-
b*cos(f*x + e)^2 + a + b)*sqrt(-a - b)/(((a*b + b^2)*cos(f*x + e)^2 - a^2 - 2*a*b - b^2)*sin(f*x + e))) - sqrt
(b)*log(128*b^4*cos(f*x + e)^8 - 256*(a*b^3 + 2*b^4)*cos(f*x + e)^6 + 32*(5*a^2*b^2 + 24*a*b^3 + 24*b^4)*cos(f
*x + e)^4 + a^4 + 32*a^3*b + 160*a^2*b^2 + 256*a*b^3 + 128*b^4 - 32*(a^3*b + 10*a^2*b^2 + 24*a*b^3 + 16*b^4)*c
os(f*x + e)^2 + 8*(16*b^3*cos(f*x + e)^6 - 24*(a*b^2 + 2*b^3)*cos(f*x + e)^4 - a^3 - 10*a^2*b - 24*a*b^2 - 16*
b^3 + 2*(5*a^2*b + 24*a*b^2 + 24*b^3)*cos(f*x + e)^2)*sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(b)*sin(f*x + e)))/f
, 1/4*(sqrt(-b)*arctan(1/4*(8*b^2*cos(f*x + e)^4 - 8*(a*b + 2*b^2)*cos(f*x + e)^2 + a^2 + 8*a*b + 8*b^2)*sqrt(
-b*cos(f*x + e)^2 + a + b)*sqrt(-b)/((2*b^3*cos(f*x + e)^4 + a^2*b + 3*a*b^2 + 2*b^3 - (3*a*b^2 + 4*b^3)*cos(f
*x + e)^2)*sin(f*x + e))) + sqrt(a + b)*log(((a^2 + 8*a*b + 8*b^2)*cos(f*x + e)^4 - 8*(a^2 + 3*a*b + 2*b^2)*co
s(f*x + e)^2 - 4*((a + 2*b)*cos(f*x + e)^2 - 2*a - 2*b)*sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(a + b)*sin(f*x +
e) + 8*a^2 + 16*a*b + 8*b^2)/cos(f*x + e)^4))/f, -1/4*(2*sqrt(-a - b)*arctan(1/2*((a + 2*b)*cos(f*x + e)^2 - 2
*a - 2*b)*sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(-a - b)/(((a*b + b^2)*cos(f*x + e)^2 - a^2 - 2*a*b - b^2)*sin(f
*x + e))) - sqrt(-b)*arctan(1/4*(8*b^2*cos(f*x + e)^4 - 8*(a*b + 2*b^2)*cos(f*x + e)^2 + a^2 + 8*a*b + 8*b^2)*
sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(-b)/((2*b^3*cos(f*x + e)^4 + a^2*b + 3*a*b^2 + 2*b^3 - (3*a*b^2 + 4*b^3)*
cos(f*x + e)^2)*sin(f*x + e))))/f]

Sympy [F]

\[ \int \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=\int \sqrt {a + b \sin ^{2}{\left (e + f x \right )}} \sec {\left (e + f x \right )}\, dx \]

[In]

integrate(sec(f*x+e)*(a+b*sin(f*x+e)**2)**(1/2),x)

[Out]

Integral(sqrt(a + b*sin(e + f*x)**2)*sec(e + f*x), x)

Maxima [A] (verification not implemented)

none

Time = 0.43 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.54 \[ \int \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=-\frac {2 \, \sqrt {b} \operatorname {arsinh}\left (\frac {b \sin \left (f x + e\right )}{\sqrt {a b}}\right ) - \sqrt {a + b} \operatorname {arsinh}\left (\frac {b \sin \left (f x + e\right )}{\sqrt {a b} {\left (\sin \left (f x + e\right ) + 1\right )}} - \frac {a}{\sqrt {a b} {\left (\sin \left (f x + e\right ) + 1\right )}}\right ) - \sqrt {a + b} \operatorname {arsinh}\left (-\frac {b \sin \left (f x + e\right )}{\sqrt {a b} {\left (\sin \left (f x + e\right ) - 1\right )}} - \frac {a}{\sqrt {a b} {\left (\sin \left (f x + e\right ) - 1\right )}}\right )}{2 \, f} \]

[In]

integrate(sec(f*x+e)*(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

-1/2*(2*sqrt(b)*arcsinh(b*sin(f*x + e)/sqrt(a*b)) - sqrt(a + b)*arcsinh(b*sin(f*x + e)/(sqrt(a*b)*(sin(f*x + e
) + 1)) - a/(sqrt(a*b)*(sin(f*x + e) + 1))) - sqrt(a + b)*arcsinh(-b*sin(f*x + e)/(sqrt(a*b)*(sin(f*x + e) - 1
)) - a/(sqrt(a*b)*(sin(f*x + e) - 1))))/f

Giac [F]

\[ \int \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=\int { \sqrt {b \sin \left (f x + e\right )^{2} + a} \sec \left (f x + e\right ) \,d x } \]

[In]

integrate(sec(f*x+e)*(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*sin(f*x + e)^2 + a)*sec(f*x + e), x)

Mupad [F(-1)]

Timed out. \[ \int \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=\int \frac {\sqrt {b\,{\sin \left (e+f\,x\right )}^2+a}}{\cos \left (e+f\,x\right )} \,d x \]

[In]

int((a + b*sin(e + f*x)^2)^(1/2)/cos(e + f*x),x)

[Out]

int((a + b*sin(e + f*x)^2)^(1/2)/cos(e + f*x), x)